Support Material
A a ra n e t Base station Modbus TCP/IP server feature

Base station
Modbus TCP/IP
server feature " aronet

Sensors

Seamlessly integrating with Modbus, the \ ol - cellar

“ Wi-Fi

industry-standard communication protocol, our Base Pty b

« system
Power

station empowers you to effortlessly connect your Aranet
sensors to existing automation and control systems,
enhancing efficiency and streamlining operations like

never before.

Modbus TCP/IP server menu and configuration settings

To enable Modbus TCP/IP feature on the Aranet base station, in the WebGUI navigate to the main menu sidebar item
shown in Fig. 1. Please note that use Modbus TCP/IP server feature requires appropriate licence file to be uploaded on

the base station.

=% root = . MODBUS_INFO_NO_ERR
Status (16-04-2025 11:20) 1
EIEREIE @ 2022-06-02 14:50

A Home ® Enable 2.
2 Graph o

502 3.

Unit D *
@ Sensors] 4.
@ Groups

Default register layout
* System modbus-autogen-address-layout json
C 5., 6.

N MQTT

e B Use custom layout file 7.
Aranet Cloud

E‘% Modbus TCP/IP j 8 . é

Figure 1: WebGUI main sidebar menu. Figure 2: TCP/IP configuration menu.

The following items are shown in the Modbus TCP/IP configuration panel as indicated in Fig. 2:
(1) — Status of Modbus TCP/IP server process.

(2) — Switch to enable or disable server process.

(8) — Field to specify TCP port number (default is 502).

(4) — Set Modbus TCP/IP server Unit ID (a.k.a. Device ID). This must be the same as one set in Modbus

ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved. Page 10f 12
www.aranet.com

https://aranet.com

A aranet

Support Material
Base station Modbus TCP/IP server feature

TCP/IP Client side. In some Client (Master) applications, this setting may be referred to as ”Slave ID”. Client requests

with incorrect Unit ID on the Modbus TCP/IP server side will be ignored (communication timeout);

(5) — Reset auto-generated address-to-measurements mapping configuration file. WARNING: all addresses used will

be reset and may differ from those assigned in previous default mapping file. This request does not affect addressing

defined by “Custom layout file”.

(6) — Download auto-generated address-to-measurements mapping configuration file.

(7) — Switch to enable or disable custom mapping configuration file usage. (This feature allows to upload a user-

specified address-to-measurements configuration file.)

(8) — Button to save configuration changes.

(9) — Button to revert the previous configuration without saving changes.

Process status description

SUCCESS_NO_ERR

No error. Modbus TCP/IP service functions correctly.

MODBUS_DISABLED_BY_USER

Service is disabled by the user. Service is not working.

MODBUS_DISABLED_BY_LICENCE

An appropriate license is not available to run this service.

Service is hot working.

WARN_ADDR_COLLISION

Warning state. Registry address overlaps with other address
(more info in “details”). Modbus server continues to accept
incoming requests and sends responses except for the reg-
isters with colliding addresses.

WARN_OFFSET_OR_ADDRESS_OUT_OF_RANGE

Warning state. One or more used offset values or result-
ing registry addresses (sum of all three offsets per measure-
ment) are out of the expected range (0-65535). Modbus
server continues to accept incoming requests and sends re-
sponses except for the registers with invalid offset values or
resulting registry addresses (more info in “details”).

ERR_CONTEXT_FAILED

Error occurred. Process failed to allocate memory for the
Modbus TCP/IP server instance (not enough free memory).

ERR_MAP_ALLOC_FAILED

Error occurred. Modbus address mapping instance alloca-
tion failed (not enough free memory).

ERR_CONTEXT_NULL

Error occurred. Error on opening Modbus TCP/IP server
socket.

ERR_LISTEN_FAILED

Error occurred. Failed to listen for incoming Modbus TCP/IP
connections (port already in use).

ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved. Page 2 of 12

www.aranet.com

https://aranet.com

Support Material
A a ra n e t Base station Modbus TCP/IP server feature

ERR_CONFIG_JSON_FAILED Error occurred. Failed to load mapping configuration JSON
file.
SERV_SETTINGS_ERR_CONFIG_LOAD Error occurred. Failed to load settings configuration file (in

order to load Modbus service settings).

SERV_SETTINGS_ERR_JSON_EMPTY Error occurred. The settings configuration file has an invalid
JSON structure.

SERV_SETTINGS_ERR_WRONG_PORT Error occurred. Incorrect port number in the service config-
uration.

ERR_OFFSET_MISSING Error occurred. Offset field is missing or type is incorrect in

mapping configuration (more info in “details”).

Address-to-measurements mapping configuration file

Modbus object types

Modbus protocol has four object types (usage depends on desired functionality and data type). It is expected that in
the configuration file there are all four of these objects defined.

Object name Amount of registers ~ Amount of bits Read function Write function
coils 1 Yes Yes
discretelnputs 1 Yes No
inputRegisters 1 16 Yes No
holdingRegisters 1 16 Yes Yes

Each type has its own address range. Each range has an offset defined by the field named offset. The address
value is limited to two bytes (0-65535). There is no binding between each object type and specific address range, e.g.,
coils can have arange 0-9999, discrete inputs 10000-19999, input registers 20000-29999, holding registers 30000-
39999, or any other configuration.

Current implementation supports discreteInputs and inputRegisters object types only. Addresses can be in
the range 0—-65535. All other types can be defined in the configuration file, but they will be ignored. It refers also to
function codes. Only function codes 2 (read discreteInputs)and 4 (read inputRegisters) are supported. Here

is an example of the use:

{
"inputRegisters": {
"offset": 30000
}
}
ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved. Page 3 of 12

www.aranet.com

https://aranet.com

A a ra n et Support Material

Base station Modbus TCP/IP server feature

Discrete input type returns sensors “packets lost” (RSSI alarm) state: 0 (alarm inactive) or 1 (alarm active, sensor
is lost). Implementation is available starting from firmware version 3.2.4. Starting from version 4.8.x, measurement
threshold alarm states can also be read from discrete input registers.

Object type to sensor mapping

Each Modbus object type can have a set of sensors as nested JSON objects. For each sensor object, there is expected
to have its own address of fset within its parent Modbus object type address range. Here is an example with sensor
mapped to Modbus data type having its offset defined:

{
"inputRegisters": {
"offset": 30000,
"1056849": {"offset": 0}, // register address will start from 3000X
"4196581": {"offset": 40} // register address will start from 3004X
}
}

Numbers “1056849” and “4196581” are internal sensor identificators. Sensors HEX identificator is mentioned in the
comment of the auto-generated address-to-measurements mapping configuration file (see “Confguration controls”,

Pt. 4) in the same line next to the sensor identificator.

Address-to-sensor-to-measurement mapping

Measurement has its field named of fset which is mandatory for each object and must have unique value between
particular sensor’s other measurement offset values (same rule applies also to sensors — unique offset value between
sensors). Sum of all three offset values determines initial address for register. Here is an example with sensor mea-
surement to address mapping:

{

"inputRegisters": {
"offset'": 30000,
"1056849": {

"offset": 0,
"humidity": {
"offset": 1
b
"temperature'": {
"offset": 2

i
"4196581": {
"offset": 10,
"temperature": {
"offset": 1

ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved. Page 4 of 12
www.aranet.com

https://aranet.com

A a ra n et Support Material

Base station Modbus TCP/IP server feature

Measurement data types

Data type helps to determine how to interpret received bytes on the Modbus client side. If incorrect data type is used
in case of user custom mapping configuration, e.g., unsigned type for negative values, it may lead to incorrect value
interpretation on Modbus client side. Also, incorrect length (16-bit instead of 32-bit) can be a source of incorrect data
interpretation (value cannot be encoded correctly as it is out of the data type’s specific value range).

dataType value Description Registry size Value range

intl6 16-bit signed integer 1 -32768-32767

int32 32-bit signed integer 2 -2147483648-2147483647
uintle 16-bit unsigned integer 1 0-65535

uint32 32-bit unsigned integer 2 0-4294967295

Asforthe datatypesuint32, int32 registry size is 2 it also affects the next address value in the sequence of address-
ing, e.g., if sensor’'s measurement initial “offset” value is 1 and its dataType value is uint32 then next measurement
offset value must be 3 (of fset plus registry size of the dataType). In case of address overlapping an error message
will be reported in Modbus configuration GUI (see “Confguration controls”) and both overlapping registries will not be
available for Modbus requests (ILLEGAL_DATA_ADDRESS exception will be received). Here is an example of the use
of these types:

{
"inputRegisters": {
"offset": 30000,
"1056849": {

// C02: 1 register long, values 0--65535
"co2": {

"dataType": "uintle",

"offset": 4 // address 30004
b

// RH: 1 register long, values 0--65535
"humidity": {

"dataType": "uintle",

"offset": 1 // address 30001
b
"offset": 0,

// CO02: 2 registers long, values -2147483648--2147483647

"temperature": {

ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved. Page 5 of 12
www.aranet.com

https://aranet.com

Support Material
A a ra n e t Base station Modbus TCP/IP server feature

"dataType": "int32",
"offset": 2 // address 30002

Measurement value multiplier

On the Modbus server side, before the value is assigned to the registry, it is multiplied depending on the measurement
precision. To retrieve the original measurement value, the received value must be multiplied by the specified constant.
Multipliers can be found in the auto-generated registry mapping configuration file (see “Confguration controls”). Same
multiplier values must be used in a custom user-specified mapping configuration file.

{
"inputRegisters": {
"offset": 30000,
"1056849": {
"co2": {
"dataType": "uintle",
"multiplier": 1, // original measurement value received
"offset": 4
I
"humidity": {
"dataType": "uintle",
"multiplier": 10, // divide by 10 to get humidity
"offset": 1
I
"offset": 0,
"temperature'": {
"dataType": "int32",
"multiplier": 1000, // divide by 1000 to get temperature
"offset": 2
}
i
}
}

The original value multiplied by the multiplier specified in the configuration determines which data type can be used
in the configuration, e.g., if the original value of temperature is -40.5 and the multiplier is 1000, then the result will be
-40500 which is out of the data type (int16) defined range (so, data type int32 should be used in that case). Here is
an additional example:

{
"inputRegisters": {
"6292285": { // Sensor 60033D; Address: 20000
ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved. Page 6 of 12

www.aranet.com

https://aranet.com

A a ra n et Support Material

Base station Modbus TCP/IP server feature

"battCharge": { // Address 20003: divide by 100 to get battCharge 1in
fraction
"dataType": "int32",
"multiplier": 100,

"offset": 3
I
"offset": 0,
"rssi": { // Address 20005: measurement rssi in dBm
"dataType": "int32",
"multiplier": 1,
"offset": 5
1
"time": { // Address 20007: measurement time in seconds
"dataType": "uint32",
"multiplier": 1,
"offset": 7
I
"vwc": { // Address 20001: divide by 1000 to get VWC in fraction
"dataType": "int32",
"multiplier": 1000,
"offset": 1
}

P
"offset": 20000

Sensor UID readable from Input registers (from v4.9.x)

One of the common sensor registry objects is the sensor’s UID (unique identifier) which can be read from the Input
registers. It represents the sensor’s HEX UID in decimal format. In the sensor’s object it is nested as an object with a

name “uid”.
Discrete Inputs for Threshold alarm states (from v4.8.4)

RSSlalarm

Sensor’s packet loss alarm state (rssiAlarm) can be read from discrete inputs registers. Each sensor has it’s object
nested inside discreteInputs type object. And each sensor object has it’'s RSSI alarm object.

NOTE: If the RSSI alarm is active for the sensor, all the measurement requests (from Input registers) except the time
will return exception ILLEGAL_DATA_VALUE. Time reading will return a Unix timestamp since RSSI alarm was set as

active.

ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved. Page 7 of 12
www.aranet.com

https://aranet.com

A a ra n et Support Material

Base station Modbus TCP/IP server feature

Measurement threshold alarms (from v4.8.4)

Measurement threshold alarm states can be read from Discrete Inputs. Each measurement has Min and Max thresh-
olds. In case if measurement value trespasses one or another threshold, appropriate threshold alarm state is being set
to "active” state (Discrete Input value: 1; "inactive state”: 0).

In Modbus Auto-generated registry address mapping configuration file Min and Max threshold alarm state register
JSON objects are nested inside the discreteInputs type object. For example, if measurement is "temperature”
then appropriate threshold alarm state JSON object name for Min and Max thresholds will be:

* MinTemperatureAlarm
* MaxTemperatureAlarm
For the 4T Transmitter measurement names will end with the probe ID:
* For measurement temperaturel:
MinTemperatureAlarm:1
MaxTemperatureAlarm:1
» For measurement temperature2:
MinTemperatureAlarm:2
MaxTemperatureAlarm:2

Temperature threshold alarm state objects inside ”discretelnputs” object example:

{
"discreteInputs": {
"offset": 10000,
"4196581": { // Sensor 4008E5; Name: 4008E5; Group name: roomEnv;
Address: 10000
"offset": 0,
"MinTemperatureAlarm": { // Address 10001: measurement
MinTemperatureAlarm
"offset": 1,
"dataType": "bit",
"address": 10001 // read-only
},
"MaxTemperatureAlarm": { // Address 10002: measurement
MaxTemperatureAlarm
"offset": 2,
"dataType": "bit",
"address": 10002 // read-only
}
3
I
}
ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved. Page 8 of 12

www.aranet.com

https://aranet.com

Support Material
A a ra n e t Base station Modbus TCP/IP server feature

Battery low alarm (from v4.9.x)

Sensor’s low battery alarm state (batteryAlarm) can be read from discrete inputsregisters. Each sensor has it’s
object nested inside discreteInputs type object. And each sensor object hasit’s batteryAlarmobject.

Example with low batteryalarm object in discretelnputs:

{
"discreteInputs":{
"offset":10000,"

4196581": { //Sensor4008E5
"offset":0,
"batteryAlarm":{ //Address10000:measurementbatteryAlarm
"offset":0,

"dataType":"bit",
"address":10000 //read-only
}

In the mapping example shown above request to address 10000 will return sensor’s 4008E5low battery alarm state: 0

—inactive, 1 active.

Offset value assignment indefault auto-generated JSON(from v4.9.x)
Register type discreteInputs fixed offset value is 10000 and for inputRegisters -30000.

For discretelnputs sensor object starts with an offset 0 and for each next paired sensor offset value is increased
by the step 20.

For inputRegisters first objectis baseStation with an offset 0. Offset for the first paired sensor will be 20 and for

each next paired sensor —offset increment is 20.

Common sensor measurements and their offsets

Common measurement objects for sensor objects nested in discreteInputs (in fixed sequence throughout for all
sensor objects):

1. batteryAlarm (offset: 0)
2. rssiAlarm (offset: 1)
3. threshold alarms for sensor specificmeasurements (sorted by name in alphabetical order):
min threshold (offset: <previous offset>+1);
max threshold (offset: <previous offset>+1).
For inputRegisters initial nested object is baseStation with offset 0 having measurement
rxMsgCounter with offset 0 which makes the address for this measurement 30000 (30000 + O + 0)

Common measurement objects for sensor objects nested in inputRegisters (in fixed sequence throughout for all

ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved. Page 9 of 12
www.aranet.com

https://aranet.com

Support Material
A a ra n e t Base station Modbus TCP/IP server feature

sensor objects):

1. uid (offset: 0);

2. battery (offset: 2);

3. rssi (offset: 3);

4. time (offset: 5);

5. sensor specific measurements (sorted by name in alphabetical order)

offset: <previous offset> + <previous measurement data type registry size>

Requesting data from Aranet PRO Modbus TCP/IP server

Important notes for the client side

Register size 16 hits

Unit ID (slave ID) 1 (not changeable)

Supported functions Read discrete inputs (code: 2), read input registers (code: 4)

Supported data types Discrete inputs, input registers (any address in the supported range of 0-65535)
Endianness Big-endian with high word first (high byte first or high word first for 2 registers/32-bit values)

Used Modbus TCP exceptions
* Incase if an unsupported function is requested, a message with ILLEGAL_FUNCTION code will be replied.

* In case if unavailable registry address is being requested, a message with TLLEGAL_DATA_ADDRESS code will be
replied. This exception is sent also in case if particular address is colliding with any other registry address.

* In case if uninitialized registry address is being requested, a message with ILLEGAL_DATA_VALUE code will be

replied. The address of the registry exists, but valid data of measurement has not been assigned yet.

Custom address-to-measurements mapping: Input registers

Below is an example of an uploaded custom address-to-measurements mapping configuration JSON file used for the
input registers request example with three 2x16-bit wide registries. Representation in the Modbus client application
can be seenin Fig. 3.

{
"inputRegisters": { // Input registry type
"1056849": {
"battCharge": { // Registry address: 30044
"dataType": "int32",
"multiplier": 100,
"offset": 4
I
ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved. Page 10 of 12

www.aranet.com

https://aranet.com

A a ra n et Support Material

Base station Modbus TCP/IP server feature

"offset": 40,

DragqWs 4 // Registry address: 30046
"dataType": "int32",
"multiplier": 1,

"offset": 6
}s
"time": { // Registry address: 30048
"dataType": "uint32",
"multiplier": 1,
"offset": 8
1
1,
"offset'": 30000
}
}
T3 Simphy Medbus TOP Client £1.2 - a -
i Paddess Pt copy downi P regsters bytes R T [dea rotes ()
I 0 wona |4 = | S InT | 20003 | 9000 cooE 14 |
(_oisconeect)| conecTen 3t INT | 20005 | FEEF FrDa = |
styve ID Frt Fograter |1 of Regs | S INT | 20007 | €238 BeDE 165417549 |
JEEN .
ort - [Lise defauits -
byt I ode | s | reger e
[DMEQII 36 bit regaters
Regquest
oa 02 @0 00 0D OF OL 04 &E 23 00 O€
[Dead before send
l SEND I response Bme [seconds) i '-'.l;':'
Resporue I] fdin :H:s":'
G0 61 006 00 O0b OF 0L 04 OC 00 00 06 »
IWE FF FF TF D@ €2 58 B€ D¥
- o 0,0 0,0
o sy response bme I max i Cirl for
] High byte first expechied resporse byles
[High weed first m Bme between sends M 1 svg | 0,000 context help
off faded [0| mn [00
E| } | .
(s cro) (sestone o) (were) (seour)) o
~y
|2022/06/02 L6:10:00 >2> 00 OL 00 OO0 00 OF 0L 04 4L 23 00 06
$2022 /06,02 LE:10:-0% < 00 Ol OO0 00 00 OF OL 04 OC 00 00 00 OE FF FF FF DB &2 58 BE DE W I

Figure 3: Modbus client application view with example configuration.

Custom address-to-measurements mapping: Dicrete inputs

Belowis anexample of uploaded custom address-to-measurements mapping configuration file JSON used for Discrete
inputs request. Representation in the Modbus client application can be seenin Fig. 4.

{
"discreteInputs": {
"4196581": {
"offset": 20,
ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved. Page 11 of 12

www.aranet.com

https://aranet.com

A a ra n et Support Material

Base station Modbus TCP/IP server feature

"rssiAlarm": { // Registry address: 10020
"dataType": "bit",
"multiplier": 1,
"offset": 1

b
"6292285": {
"offset": 20,
"rssiAlarm": { // Registry address: 10021
"dataType": "bit",

"multiplier": 1,

"offset": 0O
1
1,
"offset": 10000
}
}
& Simply Medbas TCP Client O
made TP Address Port = £ byies rnﬂﬁi.!!.' notes Chear notes)
o | wewns |q =z | T I T T |
DISCONNECT CONMECTED
Slave D Frst Cod | MNo. of Cols
a4 wazt ||: 1
— — [Use defaudts
s Feguber aze
2 byte 1D
E? *ﬁi!qﬂ [ﬁl 1 it cods
Recuest
0 04 00 00 0D 0F OL OF 27 26 00 01
[load before send
| SEND l response time (Seconds) 0,4
femorme | fadin §[_ 50
[[pa o2 a0 a0 oo o4 oL 0z oL oL -
N [Jsend 0,0 0,0
expected response bytes oontruousy response e i N Ctrl=H fir
%ﬂmtﬁ T | firne s bwaan sands TESDONSES 3 avg | 0,000 context heip
oo] ka0 Jen[00 e
(SME c1=e] [PETOHE E‘FGJ [wnma J (mrr _] [— reset) trm:"f)
2022/LL/2% 12:02:08 < 0D 02 00 00 00 04 0L 02 Ol &2 ~
2022711723 12:03:42 >>= 00 02 00 00 00 O€ 01 02 27 25 00 OL
2022/11/23 12:03:42 < 0D 03 OO0 00 00 04 01 02 0L 01 w
Figure 4: Modbus client application view with example configuration.
ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved. Page 12 of 12

www.aranet.com

https://aranet.com

	Modbus TCP/IP server menu and configuration settings
	Process status description
	Address-to-measurements mapping configuration file
	Modbus object types
	Object type to sensor mapping
	Address-to-sensor-to-measurement mapping
	Measurement data types
	Measurement value multiplier
	Sensor UID readable from Input registers (from v4.9.x)

	Discrete Inputs for Threshold alarm states (from v4.8.4)
	RSSI alarm
	Measurement threshold alarms (from v4.8.4)

	Battery low alarm (from v4.9.x)
	Offset value assignment indefault auto-generated JSON(from v4.9.x)
	Common sensor measurements and their offsets

	Requesting data from Aranet PRO Modbus TCP/IP server
	Important notes for the client side
	Used Modbus TCP exceptions
	Custom address-to-measurements mapping: Input registers
	Custom address-to-measurements mapping: Dicrete inputs

