
Support Material
Base stationModbus TCP/IP server feature

Base station
Modbus TCP/IP
server feature
Seamlessly integrating with Modbus, the
industry-standard communication protocol, our Base
station empowers you to effortlessly connect your Aranet
sensors to existing automation and control systems,
enhancing efficiency and streamlining operations like
never before.

Modbus TCP/IP server menu and configuration settings
To enable Modbus TCP/IP feature on the Aranet base station, in the WebGUI navigate to the main menu sidebar item
shown in Fig. 1. Please note that useModbus TCP/IP server feature requires appropriate licence file to be uploaded on
the base station.

Figure 1: WebGUI main sidebar menu. Figure 2: TCP/IP configuration menu.

The following items are shown in the Modbus TCP/IP configuration panel as indicated in Fig. 2:

(1)— Status of Modbus TCP/IP server process.

(2)— Switch to enable or disable server process.

(3)— Field to specify TCP port number (default is 502).

(4)— Set Modbus TCP/IP server Unit ID (a.k.a. Device ID). This must be the same as one set in Modbus

ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved.
www.aranet.com

Page 1 of 12

https://aranet.com


Support Material
Base stationModbus TCP/IP server feature

TCP/IP Client side. In some Client (Master) applications, this setting may be referred to as ”Slave ID”. Client requests
with incorrect Unit ID on the Modbus TCP/IP server side will be ignored (communication timeout);

(5)—Reset auto-generated address-to-measurementsmapping configuration file.WARNING: all addresses usedwill
be reset and may differ from those assigned in previous default mapping file. This request does not affect addressing
defined by “Custom layout file”.

(6)—Download auto-generated address-to-measurements mapping configuration file.

(7) — Switch to enable or disable custom mapping configuration file usage. (This feature allows to upload a user-
specified address-to-measurements configuration file.)

(8)—Button to save configuration changes.

(9)—Button to revert the previous configuration without saving changes.

Process status description

SUCCESS_NO_ERR No error. Modbus TCP/IP service functions correctly.

MODBUS_DISABLED_BY_USER Service is disabled by the user. Service is not working.

MODBUS_DISABLED_BY_LICENCE An appropriate license is not available to run this service.
Service is not working.

WARN_ADDR_COLLISION Warningstate. Registry addressoverlapswithother address
(more info in “details”). Modbus server continues to accept
incoming requests and sends responses except for the reg-
isters with colliding addresses.

WARN_OFFSET_OR_ADDRESS_OUT_OF_RANGE Warning state. One or more used offset values or result-
ing registry addresses (sum of all three offsets permeasure-
ment) are out of the expected range (0–65535). Modbus
server continues to accept incoming requests and sends re-
sponses except for the registers with invalid offset values or
resulting registry addresses (more info in “details”).

ERR_CONTEXT_FAILED Error occurred. Process failed to allocate memory for the
Modbus TCP/IP server instance (not enough free memory).

ERR_MAP_ALLOC_FAILED Error occurred. Modbus address mapping instance alloca-
tion failed (not enough free memory).

ERR_CONTEXT_NULL Error occurred. Error on opening Modbus TCP/IP server
socket.

ERR_LISTEN_FAILED Error occurred. Failed to listen for incomingModbus TCP/IP
connections (port already in use).

ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved.
www.aranet.com

Page 2 of 12

https://aranet.com


Support Material
Base stationModbus TCP/IP server feature

ERR_CONFIG_JSON_FAILED Error occurred. Failed to load mapping configuration JSON
file.

SERV_SETTINGS_ERR_CONFIG_LOAD Error occurred. Failed to load settings configuration file (in
order to load Modbus service settings).

SERV_SETTINGS_ERR_JSON_EMPTY Error occurred. The settings configuration file has an invalid
JSON structure.

SERV_SETTINGS_ERR_WRONG_PORT Error occurred. Incorrect port number in the service config-
uration.

ERR_OFFSET_MISSING Error occurred. Offset field is missing or type is incorrect in
mapping configuration (more info in “details”).

Address-to-measurementsmapping configuration file

Modbus object types
Modbus protocol has four object types (usage depends on desired functionality and data type). It is expected that in
the configuration file there are all four of these objects defined.

Object name Amount of registers Amount of bits Read function Write function

coils 1 1 Yes Yes
discreteInputs 1 1 Yes No
inputRegisters 1 16 Yes No
holdingRegisters 1 16 Yes Yes

Each type has its own address range. Each range has an offset defined by the field named offset. The address
value is limited to two bytes (0–65535). There is no binding between each object type and specific address range, e.g.,
coils can have a range 0–9999, discrete inputs 10000–19999, input registers 20000–29999, holding registers 30000–
39999, or any other configuration.

Current implementation supports discreteInputs and inputRegisters object types only. Addresses can be in
the range 0–65535. All other types can be defined in the configuration file, but they will be ignored. It refers also to
function codes. Only function codes 2 (read discreteInputs) and 4 (read inputRegisters) are supported. Here
is an example of the use:

{
"inputRegisters": {

"offset": 30000
}

}

ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved.
www.aranet.com

Page 3 of 12

https://aranet.com


Support Material
Base stationModbus TCP/IP server feature

Discrete input type returns sensors “packets lost” (RSSI alarm) state: 0 (alarm inactive) or 1 (alarm active, sensor
is lost). Implementation is available starting from firmware version 3.2.4. Starting from version 4.8.x, measurement
threshold alarm states can also be read from discrete input registers.

Object type to sensor mapping
EachModbusobject type canhave a set of sensors as nested JSONobjects. For each sensor object, there is expected
to have its own address offset within its parent Modbus object type address range. Here is an example with sensor
mapped to Modbus data type having its offset defined:

{
"inputRegisters": {

"offset": 30000,
"1056849": {"offset": 0}, // register address will start from 3000X
"4196581": {"offset": 40} // register address will start from 3004X

}
}

Numbers “1056849” and “4196581” are internal sensor identificators. Sensors HEX identificator is mentioned in the
comment of the auto-generated address-to-measurements mapping configuration file (see “Confguration controls”,
Pt. 4) in the same line next to the sensor identificator.

Address-to-sensor-to-measurement mapping
Measurement has its field named offset which is mandatory for each object and must have unique value between
particular sensor’s othermeasurement offset values (same rule applies also to sensors –– unique offset value between
sensors). Sum of all three offset values determines initial address for register. Here is an example with sensor mea-
surement to address mapping:

{
"inputRegisters": {

"offset": 30000,
"1056849": {

"offset": 0,
"humidity": {

"offset": 1
},
"temperature": {

"offset": 2
}

},
"4196581": {

"offset": 10,
"temperature": {

"offset": 1
}

}

ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved.
www.aranet.com

Page 4 of 12

https://aranet.com


Support Material
Base stationModbus TCP/IP server feature

}
}

Measurement data types
Data type helps to determine how to interpret received bytes on the Modbus client side. If incorrect data type is used
in case of user custom mapping configuration, e.g., unsigned type for negative values, it may lead to incorrect value
interpretation on Modbus client side. Also, incorrect length (16-bit instead of 32-bit) can be a source of incorrect data
interpretation (value cannot be encoded correctly as it is out of the data type’s specific value range).

dataType value Description Registry size Value range

int16 16-bit signed integer 1 -32768–32767
int32 32-bit signed integer 2 -2147483648–2147483647
uint16 16-bit unsigned integer 1 0–65535
uint32 32-bit unsigned integer 2 0–4294967295

As for the data typesuint32, int32 registry size is 2 it also affects the next address value in the sequence of address-
ing, e.g., if sensor’s measurement initial “offset” value is 1 and its dataType value is uint32 then next measurement
offset value must be 3 (offset plus registry size of the dataType). In case of address overlapping an error message
will be reported in Modbus configuration GUI (see “Confguration controls”) and both overlapping registries will not be
available for Modbus requests (ILLEGAL_DATA_ADDRESS exception will be received). Here is an example of the use
of these types:

{
"inputRegisters": {

"offset": 30000,
"1056849": {

// CO2: 1 register long, values 0--65535
"co2": {

"dataType": "uint16",
"offset": 4 // address 30004

},

// RH: 1 register long, values 0--65535
"humidity": {

"dataType": "uint16",
"offset": 1 // address 30001

},
"offset": 0,

// CO2: 2 registers long, values -2147483648--2147483647
"temperature": {

ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved.
www.aranet.com

Page 5 of 12

https://aranet.com


Support Material
Base stationModbus TCP/IP server feature

"dataType": "int32",
"offset": 2 // address 30002

}
}

}
}

Measurement valuemultiplier
On theModbus server side, before the value is assigned to the registry, it is multiplied depending on themeasurement
precision. To retrieve the original measurement value, the received valuemust bemultiplied by the specified constant.
Multipliers can be found in the auto-generated registrymapping configuration file (see “Confguration controls”). Same
multiplier values must be used in a custom user-specified mapping configuration file.

{
"inputRegisters": {

"offset": 30000,
"1056849": {

"co2": {
"dataType": "uint16",
"multiplier": 1, // original measurement value received
"offset": 4

},
"humidity": {

"dataType": "uint16",
"multiplier": 10, // divide by 10 to get humidity
"offset": 1

},
"offset": 0,
"temperature": {

"dataType": "int32",
"multiplier": 1000, // divide by 1000 to get temperature
"offset": 2

}
},

}
}

The original value multiplied by the multiplier specified in the configuration determines which data type can be used
in the configuration, e.g., if the original value of temperature is -40.5 and the multiplier is 1000, then the result will be
-40500 which is out of the data type (int16) defined range (so, data type int32 should be used in that case). Here is
an additional example:

{
"inputRegisters": {

"6292285": { // Sensor 60033D; Address: 20000

ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved.
www.aranet.com

Page 6 of 12

https://aranet.com


Support Material
Base stationModbus TCP/IP server feature

"battCharge": { // Address 20003: divide by 100 to get battCharge in
fraction
"dataType": "int32",
"multiplier": 100,
"offset": 3

},
"offset": 0,
"rssi": { // Address 20005: measurement rssi in dBm

"dataType": "int32",
"multiplier": 1,
"offset": 5

},
"time": { // Address 20007: measurement time in seconds

"dataType": "uint32",
"multiplier": 1,
"offset": 7

},
"vwc": { // Address 20001: divide by 1000 to get VWC in fraction

"dataType": "int32",
"multiplier": 1000,
"offset": 1

}
},
"offset": 20000

}
}

Sensor UID readable from Input registers (from v4.9.x)

One of the common sensor registry objects is the sensor’s UID (unique identifier) which can be read from the Input
registers. It represents the sensor’s HEX UID in decimal format. In the sensor’s object it is nested as an object with a
name “uid”.

Discrete Inputs for Threshold alarm states (from v4.8.4)

RSSI alarm

Sensor’s packet loss alarm state (rssiAlarm) can be read from discrete inputs registers. Each sensor has it’s object
nested inside discreteInputs type object. And each sensor object has it’s RSSI alarm object.

NOTE: If the RSSI alarm is active for the sensor, all the measurement requests (from Input registers) except the time
will return exception ILLEGAL_DATA_VALUE. Time reading will return a Unix timestamp since RSSI alarm was set as
active.

ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved.
www.aranet.com

Page 7 of 12

https://aranet.com


Support Material
Base stationModbus TCP/IP server feature

Measurement threshold alarms (from v4.8.4)

Measurement threshold alarm states can be read from Discrete Inputs. Each measurement has Min and Max thresh-
olds. In case if measurement value trespasses one or another threshold, appropriate threshold alarm state is being set
to ”active” state (Discrete Input value: 1; ”inactive state”: 0).

In Modbus Auto-generated registry address mapping configuration file Min and Max threshold alarm state register
JSON objects are nested inside the discreteInputs type object. For example, if measurement is ”temperature”
then appropriate threshold alarm state JSON object name for Min andMax thresholds will be:

• MinTemperatureAlarm

• MaxTemperatureAlarm

For the 4T Transmitter measurement names will end with the probe ID:

• For measurement temperature1:

MinTemperatureAlarm:1

MaxTemperatureAlarm:1

• For measurement temperature2:

MinTemperatureAlarm:2

MaxTemperatureAlarm:2

Temperature threshold alarm state objects inside ”discreteInputs” object example:

{
"discreteInputs": {

"offset": 10000,
"4196581": { // Sensor 4008E5; Name: 4008E5; Group name: roomEnv;

Address: 10000
"offset": 0,
"MinTemperatureAlarm": { // Address 10001: measurement

MinTemperatureAlarm
"offset": 1,
"dataType": "bit",
"address": 10001 // read-only

},
"MaxTemperatureAlarm": { // Address 10002: measurement

MaxTemperatureAlarm
"offset": 2,
"dataType": "bit",
"address": 10002 // read-only

}
}

}
}

ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved.
www.aranet.com

Page 8 of 12

https://aranet.com


Support Material
Base stationModbus TCP/IP server feature

Battery low alarm (from v4.9.x)
Sensor’s low battery alarm state (batteryAlarm) can be read from discrete inputsregisters. Each sensor has it’s
object nested inside discreteInputs type object. And each sensor object has it’s batteryAlarmobject.

Example with low batteryalarm object in discreteInputs:

{
"discreteInputs":{

"offset":10000,"
4196581":{ //Sensor4008E5

"offset":0,
"batteryAlarm":{ //Address10000:measurementbatteryAlarm

"offset":0,
"dataType":"bit",
"address":10000 //read-only
}

}
}

}

In the mapping example shown above request to address 10000 will return sensor’s 4008E5low battery alarm state: 0
–inactive, 1 active.

Offset value assignment indefault auto-generated JSON(from v4.9.x)
Register type discreteInputs fixed offset value is 10000 and for inputRegisters –30000.

For discreteInputs sensor object starts with an offset 0 and for each next paired sensor offset value is increased
by the step 20.

For inputRegisters first object is baseStationwith an offset 0. Offset for the first paired sensor will be 20 and for
each next paired sensor –offset increment is 20.

Common sensor measurements and their offsets
Common measurement objects for sensor objects nested in discreteInputs (in fixed sequence throughout for all
sensor objects):

1. batteryAlarm (offset: 0)

2. rssiAlarm (offset: 1)

3. threshold alarms for sensor specificmeasurements (sorted by name in alphabetical order):

min threshold (offset: <previous offset>+1);

max threshold (offset: <previous offset>+1).

For inputRegisters initial nested object is baseStationwith offset 0 having measurement

rxMsgCounterwith offset 0 which makes the address for this measurement 30000 (30000 + 0 + 0)

Common measurement objects for sensor objects nested in inputRegisters (in fixed sequence throughout for all

ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved.
www.aranet.com

Page 9 of 12

https://aranet.com


Support Material
Base stationModbus TCP/IP server feature

sensor objects):

1. uid (offset: 0);

2. battery (offset: 2);

3. rssi (offset: 3);

4. time (offset: 5);

5. sensor specific measurements (sorted by name in alphabetical order)

offset: <previous offset> + <previous measurement data type registry size>

Requesting data fromAranet PROModbus TCP/IP server

Important notes for the client side

Register size 16 bits
Unit ID (slave ID) 1 (not changeable)
Supported functions Read discrete inputs (code: 2), read input registers (code: 4)
Supported data types Discrete inputs, input registers (any address in the supported range of 0–65535)
Endianness Big-endianwith highword first (highbyte first or highword first for 2 registers/32-bit values)

UsedModbus TCP exceptions
• In case if an unsupported function is requested, a message with ILLEGAL_FUNCTION code will be replied.

• In case if unavailable registry address is being requested, a message with ILLEGAL_DATA_ADDRESS code will be
replied. This exception is sent also in case if particular address is colliding with any other registry address.

• In case if uninitialized registry address is being requested, a message with ILLEGAL_DATA_VALUE code will be
replied. The address of the registry exists, but valid data of measurement has not been assigned yet.

Custom address-to-measurementsmapping: Input registers
Below is an example of an uploaded custom address-to-measurements mapping configuration JSON file used for the
input registers request example with three 2×16-bit wide registries. Representation in the Modbus client application
can be seen in Fig. 3.

{
"inputRegisters": { // Input registry type

"1056849": {
"battCharge": { // Registry address: 30044

"dataType": "int32",
"multiplier": 100,
"offset": 4

},

ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved.
www.aranet.com

Page 10 of 12

https://aranet.com


Support Material
Base stationModbus TCP/IP server feature

"offset": 40,
"rssi": { // Registry address: 30046

"dataType": "int32",
"multiplier": 1,
"offset": 6

},
"time": { // Registry address: 30048

"dataType": "uint32",
"multiplier": 1,
"offset": 8

}
},
"offset": 30000

}
}

Figure 3: Modbus client application view with example configuration.

Custom address-to-measurementsmapping: Dicrete inputs
Below isanexampleofuploadedcustomaddress-to-measurementsmappingconfigurationfileJSONused forDiscrete
inputs request. Representation in the Modbus client application can be seen in Fig. 4.

{
"discreteInputs": {

"4196581": {
"offset": 20,

ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved.
www.aranet.com

Page 11 of 12

https://aranet.com


Support Material
Base stationModbus TCP/IP server feature

"rssiAlarm": { // Registry address: 10020
"dataType": "bit",
"multiplier": 1,
"offset": 1

}
},
"6292285": {

"offset": 20,
"rssiAlarm": { // Registry address: 10021

"dataType": "bit",
"multiplier": 1,
"offset": 0

}
},
"offset": 10000

}
}

Figure 4: Modbus client application view with example configuration.

ver. 2.0 (2025-04-16) © 2025 SAF Tehnika JSC. All rights reserved.
www.aranet.com

Page 12 of 12

https://aranet.com

	Modbus TCP/IP server menu and configuration settings
	Process status description
	Address-to-measurements mapping configuration file
	Modbus object types
	Object type to sensor mapping
	Address-to-sensor-to-measurement mapping
	Measurement data types
	Measurement value multiplier
	Sensor UID readable from Input registers (from v4.9.x)

	Discrete Inputs for Threshold alarm states (from v4.8.4)
	RSSI alarm
	Measurement threshold alarms (from v4.8.4)

	Battery low alarm (from v4.9.x)
	Offset value assignment indefault auto-generated JSON(from v4.9.x)
	Common sensor measurements and their offsets

	Requesting data from Aranet PRO Modbus TCP/IP server
	Important notes for the client side
	Used Modbus TCP exceptions
	Custom address-to-measurements mapping: Input registers
	Custom address-to-measurements mapping: Dicrete inputs


